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We discuss a class of generalized wormlike chain models of polymers with spontaneous curvature and show
that the density of states and consequently the entropy of such natively bent polymers are higher than that of
straight ones. This effect changes the classical Langmuir binding isotherm by giving rise to enhanced binding
of DNA-bending proteins.
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Nucleoid-associated proteins such as IHF, H-NS, HU, Fis,
etc. play an important role in the organization and compac-
tion of double-stranded DNA �dsDNA� in prokaryotic cells
by introducing bends into DNA and/or changing its stiffness
�1�. The effect of binding of such proteins on elastic proper-
ties of DNA was investigated using single-molecule experi-
ments �2–6� and models �7–10�. In this paper, we focus on an
important, hitherto unnoticed consequence of introducing
large local bends into DNA, namely, that the presence of
spontaneous curvature in the DNA-protein complex in-
creases the torsional entropy of the bent polymer compared
to that of bare DNA. Since our analysis is based on a par-
ticular generalization of the wormlike chain �WLC� model to
large local deformations �the latter is based on the linear
theory of elasticity and is strictly applicable only to small
bending angles�, we verify that our qualitative conclusions
remain valid for several different generalizations of the WLC
that go beyond linear theory of elasticity and, in particular,
for the well-known freely rotating model of polymers �11�.
Finally, we show that the bending-induced increase of tor-
sional entropy leads to enhancement of the binding of DNA-
bending proteins compared to the binding of proteins that do
not affect the spontaneous curvature of the macromolecule.

A semiflexible polymer such as dsDNA whose cross sec-
tion is much smaller than its persistence length can be mod-
eled as an inextensible wormlike chain. In the WLC model,
the bending energy penalty associated with a conformation
�described by space curve r��s�� of such a polymer is a qua-
dratic functional of the local curvature ��s�= �d2r� /ds2� �11�

E

kBT
=

lp

2
�

0

L

ds���s��2. �1�

Here, kB and T are the Boltzmann constant and temperature,
respectively, lp is the persistence length, and L is the total
contour length of the polymer. Inspection of Eq. �1� shows
that the energetically favorable conformation is a straight
line for which ��s�=0. In the discrete form of WLC, the
polymer is represented by a succession of N segments of
length �s each, such that L=N�s. Scaling all lengths by �s
and all energies by kBT, the energy of a discrete WLC is
given by

Ẽ =
l̃p

2 �
n

��̃n�2, �2�

where we introduced the dimensionless quantities Ẽ

=E / �kBT�, l̃p= lp /�s, and �̃n=��s. The effective curvature of

the discrete WLC can be related to the angle between the
tangents of the nth �t̂n� and n+1th �t̂n+1� segments,
cos���n�= t̂n · t̂n+1. From the formal definition of curvature
�= �dt̂ /ds�, we obtain

�̃n = �2�1 − cos ��n� . �3�

In the continuum limit, one usually considers only small lo-
cal deformations for which the linear theory of elasticity ap-
plies ���n→0 as �s→0� and, since expanding the above
expression in ��n yields �̃n=��n, one recovers the familiar
relationship �=d� /ds.

While the assumption of small local bending deforma-
tions is adequate to describe most single-molecule mechani-
cal studies of dsDNA, it breaks down in the presence of
DNA-binding proteins that introduce sharp bends into DNA
�12�. Indeed, experiments on HU-DNA complexes show that
the binding of this nucleoid-associated bacterial protein in-
troduces a bending angle from 65° �13,14� up to 140°
�15,16� into DNA at the location of the bound protein.
Within the framework of the linear theory of elasticity, the
energy penalty for deviations from the bent reference state
characterized by the preferred bending angle ��0��s� is a qua-
dratic functional of ���s�=d� /ds−d��0� /ds, where d��0� /ds
is the spontaneous curvature. This form holds only for small
local deformations and its extension to large bending angles
goes beyond linear elasticity and depends on microscopic
details �e.g., �9,17��. In a recent paper �10�, we generalized
the discrete WLC by introducing the discrete spontaneous
curvature �̃n

�0�=�2�1−cos ��n
�0��. Assuming that the bending

energy remains a quadratic functional of ��̃n= �̃n− �̃n
�0�, it can

be written as Ẽ=�nẽn, where

ẽn =
l̃p

2
���̃n�2 �4�

is the dimensionless energy per segment �see, e.g., �18��.
Note that a given set of local curvatures 	�̃n

�0�
 does not de-
termine a unique spatial conformation of the polymer but
rather represents a family of such conformations. This is a
consequence of the fact that while any conformation of a
discrete chain of segments is defined by the sets of bending
	��n
 and torsional 	��n
 angles, in the absence of torsional
rigidity �as is the case in the standard WLC model�, there is
no energy penalty for changing the latter angles and they can
take any value in the interval �−� ,�� �see Fig. 1�.
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In the absence of excluded volume interactions, the parti-
tion function of the polymer can be written as the product of
partition functions of overlapping dimers, each of which de-
pends on the angle ���0� between two neighboring segments

�n = 2��
0

2

d�̃n�̃ne−ẽn, �5�

where we integrated over the angle �� and used the relation
sin���n�d���n�= �̃nd�̃n �notice that �̃n varies in the interval

�0, 2��. In Fig. 2, we plot the dimensionless free energy f˜

=−ln��n�, mean energy �ẽn�=2�0
2d�̃n�̃nẽn exp�−ẽn� /�n, and

entropy s̃= �ẽn�− f̃ per segment against the spontaneous cur-
vature �̃�0�, where the free energy and entropy are measured
with respect to their values in the straight ��̃�0�=0� state

� f̃ = f̃��̃�0�� − f̃�0� ,

�s̃ = s̃��̃�0�� − s̃�0� . �6�

Inspection of Fig. 2�a� shows that �1� the free energy of a
strongly bent chain ��̃�0��1� is much lower than that of a
chain with no spontaneous curvature, �2� this effect is mainly
of entropic origin, and �3� the effect is nonmonotonic and the
entropy first increases �for ���0�	� /2� and then decreases
�for ���0�
� /2� with spontaneous angle. The variation of
the entropy with spontaneous angle or curvature is a direct
consequence of the three-dimensional geometry of the prob-
lem: if we take the z axis in the direction of the nth segment
�ẑ= t̂n�, the spherical angles ���n ,��n� define the direction
of the tangent to the n+1th segment. As ��n

�0� increases from
0 to � /2 ��̃�0� increases from 0 to �2�, the circumference of
the circle spanned by the rotation of the tangent on the unit
sphere �as ��n varies between −� to �� increases �see Fig.
1� and one concludes that there are more states available for
the polymer in the vicinity of a higher spontaneous angle
��n

�0� in the interval �0,� /2� �density of states decreases

with increasing ��n
�0� in the interval �� /2,���. The above

argument becomes exact in the purely entropic, freely rotat-
ing chain �FRC� model in which the angle ��n is constant
�fixed at some value ��n

�0�� and the torsional angle ��n is
distributed uniformly between −� and �. The dimer partition
function is

�FRC = 2��
0

�

d����sin�������� − ���0�� = 2� sin����0��

�7�

and, therefore, the torsional entropy

s̃FRC � ln�sin����0��� �8�

is a symmetric function of ���0� in the interval �0,��, with a
maximum at � /2.

As mentioned earlier, the extension of the linear theory of
elasticity to large local bending angles is nonunique and de-
pends on the microscopic model of the polymer. In order to
check whether the qualitative results of our extended WLC
defined by Eq. �4� apply to other possible model choices, we
calculated the thermodynamic potentials for some other en-
ergy functionals. The model defined by

ẽn =
l̃p

2
���n − ��n

�0��2 �9�

yields an entropy �s̃ that is symmetric with to ��n
�0�=� /2

and behaves approximately like that of a FRC �see Fig. 2�b��.
For yet another choice of an energy functional,

FIG. 1. �Color online� �Left� Schematic drawing of ground-state
conformations of a protein-DNA complex. The ground state is de-
generate since the binding of proteins determines the spontaneous
angles 	��n

�0�
 but the torsional angles 	��n
�0�
 are uniformly distrib-

uted in the interval �−� ,��. �Right� Since the measure contains a
factor of sin ��n

�0�, the number of states of a dimer for a particular
��n

�0� is proportional to the circumference of the circle spanned by
the rotation of the tangent on the unit sphere.

(b)

(a)

(c)

FIG. 2. �Color online� The dimensionless free energy �red solid
line�, entropy �black dashed line�, and mean energy �blue dotted
line� per segment of generalized WLC are plotted vs the spontane-
ous curvature for different models of semiflexible polymers de-
scribed by �a� Eq. �4�, �b� Eq. �9�, and �c� Eq. �10�. The dimension-

less persistence length is taken to be l̃p=17.
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ẽn =
l̃p

2
�cos���n� − cos���n

�0���2, �10�

the partition function is

�n = 2��
−1

1

d�e−�l̃p/2��� − ��0��2
, �11�

where �=cos���n� and ��0�=cos���n
�0��. In this case, the en-

tropy of a bent chain is larger than that of a straight one, but
is nearly independent of the spontaneous curvature through
most of the range �see Fig. 2�c��. Notice that the results de-

pend also on the choice of l̃p and, consistent with the relation
between DNA persistence length lp�50 nm and HU protein

size �s�3 nm, we used l̃p=17 for the plots in Fig. 2.
Based on the preceding discussion, we conclude that, in-

dependent of the precise microscopic model, the torsional
entropy of a semiflexible polymer is an increasing function
of its spontaneous curvature �for bending angles 	� /2�. The
physical significance of this observation stems from the fact
that while the spontaneous curvature of an isolated polymer
is determined by its sequence and is fixed once and for all
during the polymerization process, this curvature can be af-
fected by binding of small molecules �e.g., proteins� that
introduce sharp bends in the polymer. Since �for not too high
bending angles� the free energy of a bent polymer-protein
complex is lower than that of a bare �straight� polymer, more
such proteins would bind to an elastic polymer than to a rigid
rod. In order to demonstrate this effect, let us consider a
discrete WLC model of DNA �the model of Eq. �4�� in solu-
tion of proteins characterized by a dimensionless chemical
potential ̃ �which depends on the protein concentration in
solution and on the DNA-protein binding energy�. A dimer of
the DNA chain can be either free �occupancy of node be-
tween the two segments �=0� and therefore straight or oc-
cupied by a protein �node occupancy �=1� and therefore
bent at angle ��0� or, equivalently, having spontaneous curva-
ture �̃�0�. The grand canonical partition function for the
�open� DNA+bound proteins system is given by the product
of the partition functions of the noninteracting dimers �ne-
glecting cooperativity and excluded volume effects�, each of
which is of the form

�G = 2��
�=0

1 �
0

2

d�̃�̃e−�l̃p/2���̃ − ��̃�0��2+�̃. �12�

Taking �̃�0�=0 in the above equation removes the coupling
between protein binding and polymer elasticity and one re-
covers the standard Langmuir isotherm for the mean occu-
pancy ��� vs chemical potential ̃. For �̃�0�
0, the isotherm
is shifted to lower values of the chemical potential

��� =
1

1 + e� f̃−̃
, �13�

where � f̃ 	0 �for not too high bending angles; see Fig. 2�a��
and we conclude that bending increases the effective binding
affinity and promotes binding at low protein concentrations.
This qualitative conclusion remains valid for other WLC-like
models of polymer elasticity �Eqs. �9� and �10�� as well.

In summary, we have shown that spontaneous curvature
increases the torsional entropy and therefore decreases the
free energy of a wormlike polymer. As demonstrated by the
freely rotating chain model, the origin of this effect is the
three-dimensional geometry of space: the density of states of
two connected segments increases with the angle between
them. In order to illustrate the physical consequences of the
torsional entropy increase, we calculated the resulting shift
of the Langmuir adsorption isotherm and showed that it leads
to enhanced binding of DNA-bending proteins. Finally, we
would like to add a word of caution. In the literature, one
often fails to make the distinction between torsion and twist;
while curvature and torsion define the three-dimensional
conformation of a line �through the Frenet equations of dif-
ferential geometry�, twist cannot be defined for a mathemati-
cal line and is the property of objects that have finite cross
section �e.g., cylinders or ribbons �18��. The present paper
deals only with polymers that can be described as wormlike
chains, i.e., lines with bending but no twist rigidity. This
captures the behavior of DNA molecules under extension but
if one applies torque to DNA and changes its linking number,
one can no longer neglect the twist degrees of freedom. Con-
sideration of the effect of binding of proteins on the twist
rigidity and intrinsic linking number of torsionally con-
strained dsDNA and through them on the balance between
twist and writhe �reported in Ref. �19�� is beyond the scope
of the present work.
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